
Connecting to the CotSS IRC Service

July 3, 2020

1 Introduction

IRC (Internet Relay Chat) is a protocol that allows users to communicate over
the Internet; specifically, it allows a client (you) to communicate with a server

(CotSS, located at frostsnow.net). By itself, IRC sends information in plain-

text, meaning that anyone can view and even modify said information. In order
to prevent this, the IRC protocol can be encapsulated by the TLS (Transport
Layer Security) protocol, which turns the plaintext into ciphertext which can
be neither read (giving confidentiality) nor modified (giving integrity). In ad-
dition, TLS provides authenticity, which verifies the server to the client (letting
the client know that it is indeed communicating with CotSS and not an im-
poster) and optionally verifies the client to the server (letting the server know
that it is talking with a specific client). Lastly, TLS provides authorization,
which verifies that the client is allowed to connect to the server. This guide will
show you how to use TLS to connect to the CotSS IRC server.

TLS uses a type of cryptography often referred to as “Public-Private Key”
Cryptography (formally, Asymmetric Cryptography), because each party has a
pair of keys. A public key is shared between parties while a private key is kept
secret. In TLS, the public key is called a certificate (more specifically, an X.509

certificate). Therefore, in order to communicate with CotSS, you will need three
things: 1) the server’s certificate, in order for you to verify that the computer
you are talking to is in fact CotSS; 2) your certificate, in order for the server
to verify that it is talking to you; and 3) your private key, in order to verify to
the server that you are the proper owner of the certificate. Note that the server
will use its private key in order to verify to you that it is the proper owner of
its certificate.

2 Connecting

Connecting will involve two steps: 1) verifying the server to yourself, and 2)
verifying yourself to the server.

1

2.1 Server Verification

Verifying the server to yourself will also consist of two steps: 1) obtaining a
trusted copy of the server’s root certificate, and 2) configuring your client to use
said certificate.

The best way to verify that you have a valid copy of the server’s root certifi-
cate (and can therefore trust it) is to get its fingerprint in-person from someone
whom you trust, then verify the fingerprint of the certificate which you obtain
online against the trusted fingerprint. You must either do this on your own
in-person, or blindly trust your luck that no one has tampered with the root
certificate; if you choose to blindly trust your luck, do keep in mind that if
your root certificate is an imposter’s, then all subsequent connections will be
vulnerable to the same imposter, thus you should make an attempt to verify
the certificate if you are able to do so.

In order to get the certificate, run the commands:

$ mkdir ~/irc

$ wget https ://www.frostsnow.net/contact/cotss.pem

$ mv cotss.pem ~/irc

The $ denotes the beginning of a command. The first command creates a
directory named irc in your home directory. The second command retrieves the
certificate for CotSS from a website. The final command moves the certificate
to an expected location.

Now verify the root certificate by comparing its fingerprint against one you’ve
received from a trusted source:

$ openssl x509 -in ~/irc/cotss.pem -fingerprint \

-sha256 -noout

The -in ~/irc/cotss.pem instructs the command to use the certificate which
you just retrieved from the website. -fingerprint tells the command to gener-
ate a fingerprint of the specified certificate. -sha256 makes the command use a
more secure hash function than the default SHA-1. Last, -noout prevents the
command from redundantly printing the certificate. If the fingerprint output by
the command matches your trusted source, then you have successfully validated
it!

For the curious, in order to actually view the contents of the certificate, run
the command:

$ openssl x509 -in ~/irc/cotss.pem -text -noout

. . . which should then show various information about the certificate. For extra
fun, perform the same steps except use google.com:8080 instead of frostsnow.net:6697.

Now that you have a copy of the server’s certificate, you need to tell your IRC
client to use it as a Certificate Authority (CA); Certificate Authorities determine
which certificates are valid (roughly speaking). This step of configuring your
IRC client is client-specific, in other words, different clients will have different
methods of configuration. This guide will use the irssi client; if you are using

2

another client, you will need to look at its documentation in order to figure
out how to perform this step. In order to connect using the certificate you’ve
downloaded, launch the irssi program and connect with the command:

/connect -ssl_verify -ssl_cafile ~/irc/cotss.pem \

frostsnow.net 6697

This will instruct irssi to connect to frostsnow.net, port 6697 (again, where
CotSS is located) using the file ~/irc/cotss.pem as a Certificate Authority,
after which you will propmpty be disconnected from the server as you have not
yet provided a valid client certificate, which is the topic of the next section. Go
ahead and type /rmreconns to prevent irssi from trying in vain to reconnect
to the server, then type /exit to quit irssi.

2.2 Client Verification

Creating a client certificate is more involved than getting the server’s certificate
because you must have your certificate signed by the appropriate certificate
authority. While this can be done by hand, the afrc (Admin, Friend, Referrer
Client) script exists in order to make the process easier and the instructions will
thus make use of it. You will need to: 1) initialize your AFR client, 2) send
the certificate signing request, 3) receive the certificate signing request, and 4)
configure your IRC client to use the signed certificate and private key.

Begin by installing the afrc utility. Use the git command in order to clone
the latest version of the utility’s code repository:

git clone https ://github.com/clinew/afr.git

Then change directory into the repository and install the utility:

cd afr

sudo make install

The utility should now be installed! Though you may need to configure your
shell to include locally-installed utilities via:

export PATH=/usr/local/bin:$PATH

if the following commands fail with command not found.
With the command installed it is now time to initialize your client certificate

infrastructure and generate a certificate signing request (CSR). Figure out what
you want your Erisian Holy Name (think: “nickname”) to be and then run the
following, replacing NAME with your desired name:

afrc init NAME

The certificate signing request must now be signed (obviously). Ideally, this
should be done in the same way as for validating the server certificate: ei-
ther using GPG signatures with a previously-verified public key or by physi-
cally exchanging the files in person. In practice, you’ll probably just e-mail the

3

~/irc/csr.pem file to the person who invited you like a lazy fuck. You ought
to know how to do that.

The signer will then provide you with a signed certificate. Assuming that
the signed cert is located in a file named cert.pem, install the certificate by
running:

afrc receive -client cert.pem

Lastly, you must configure your client to use both the signed certificate and
your secret key. As with setting up the server certificate, these instructions are
specific to the irssi client and if you are using a different client then you will
need to adapt the instructions to your client. Also, the following command will
assume that you have successfully obtained and verified the server’s certificate
as per the preceding section. Now, in order to use your newly-obtained client
certificate, start irssi and run the following command, replacing USER with
your username (and without backslashes and all on one line):

/connect -ssl_verify -ssl_cafile ~/irc/cotss.pem \

-ssl_cert ~/.afrc/USER/certs/USER.pem \

-ssl_pkey ~/.afrc/USER/private/USER.pem \

frostsnow.net 6697

The additional arguments, -ssl cert ~/.afrc/USER/certs/USER.pemand -ssl pkey

~/.afrc/USER/private/USER.pem specify your client certificate and your pri-
vate key, respectively. After running the command, you should now be con-
nected to IRC!1

3 Using irssi

This section provides a quick introduction for using the irssi client. If you
already know how to use irssi or some other IRC client then you may skip
this section.

3.1 Autoconnect

Unless you are a fan of circumlocution, you probably do not wish to re-type the
preceding /connect command every time you connect to CotSS, thus it makes
sense to configure irssi to connect automatically on startup. In order to do
this it must first be understood that IRC consists of a network of interconnected
servers. Therefore, in order to set up autoconnect we must tell irssi both the
network and the server that we are connecting to. For CotSS, which has only
one server, this seems rather redundant, but remember that most IRC networks
consist of multiple servers and thus irssi reflects this fact. Start by running
the command:

/network add cotss

1If not then curse, take a deep breath, and carefully re-read the instructions. Failing that,

feel free to contact someone knowledgeable for help.

4

. . . which adds a network with the name cotss. Next add the server to the
cotss network:

/server add -auto -network cotss -ssl_verify \

-ssl_cafile ~/irc/cotss.pem \

-ssl_cert ~/.afrc/USER/certs/USER.pem \

-ssl_pkey ~/.afrc/USER/private/USER.pem \

frostsnow.net 6697

This mirrors the /connect command, except instead of connecting it is config-
uring irssi to automatically connect to the server with the given arguments
on startup. Save the configuration with:

/save

. . . and then restart irssi to automatically connect!

3.2 Navigation

irssi is divided into windows, which can contain either channels or private

messages. Windows are numbered, with window number 1 holding status mes-
sages and subsequent windows numbered sequentially after that (2, 3, 4, . . .).
You can join channels by running /join <channelname>where <channelname>
is, obviously, the name of the channel that you wish to join; note that, in IRC,
channels start with a # symbol (which is not a Twatter hashtag). Likewise, you
may message users by typing /msg <username>where <username> is, obviously,
the nickname of the user that you wish to message. Both of these actions will
open up a new window (/join will actually activate that window), and you
can then navigate between windows by either typing /window <number> or by
pressing Alt+<number> (depending on your terminal) where <number> is the
number of the window that you wish to activate. More information and options
may be found by typing /help window.

4 NickServ

By default, anyone may use any nickname that is not currently in use after
connecting to IRC. In order to claim ownership of a nickname, one must register
it with services by messaging the bot named NickServ and then identify to that
nickname on subsequent connections. The easiest way to do this on cotss is to
1) register with NickServ and then 2) identify using your client certificate. In
order to register, run the following command while on the nick that you wish
to register:

/msg NickServ register <your_password > \

<your_bogus_email >

. . . where <your password> should be a unique password for your account
(don’t send me a password that you’ve previously used elsewhere, that’s just

5

stupid) and <your bogus email> is some gibberish (all e-mail functionality has
been disabled for cotss). After that, you may manually identify to NickServ

on subsequent connections by running the command:

/msg NickServ identify <your_password >

. . . but that’s a pain, so the easier option is to add your client certificate’s
fingerprint, which is a unique identifier for that certificate, to NickServ’s list
of valid fingerprints for your account. You can add your current fingerprint to
NickServ’s list of valid fingerprints for your account by running:

/msg NickServ cert add

. . . and you should now be identified automatically when you connect!
More information about NickServ’s services may be found by running /msg

NickServ help.

5 Inviting Friends

Depending on your relationship with me, the server admin, you may be able to
sign additional client certificates, thereby inviting your friends to cotss. This
certificate architecture is known as ”Admin, Friend, Referred” based on the idea
that there is a server admin, their friends, and those whom said friends have
referred. In order to do this you will need to request and receive a referrer

certificate from me and then use that certificate in order to supply a certificate
revocation list (CRL) to me. This process is extremely cumbersome on its own,
but the afrc utility should make it much easier.

5.1 Obtaining a referrer certificate

Begin by requesting a referrer certificate:

afrc request -referrer

Read the command output in order to find out where the CSR for the referrer
certificate is located, then send that request to me for signing. Once (and ”if”)
I send you the signed referrer certificate, then, assuming the signed certificate is
located at ~/referrer.pem, run the following command in order to install the
referrer certificate:

afrc receive -referrer ~/ referrer.pem

When you install the certificate, the relevant CRL will automatically be gener-
ated for you. Read the command output and then be sure to send the CRL file
to me, otherwise none of the users you invite will be able to connect!

5.2 Signing Friend’s Certificates

In order to sign your friend’s certificate, your friend must first create a certificate

signing request (CSR), as explained earlier in this guide, and then send the

6

signing request to you. When you receive the signing request, then, assuming
the request is in the file ~/csr.pem, you should first verify that it is of the
appropriate key length and has the correct Common Name before signing it by
running:

$ openssl req -in ~/csr.pem -text -noout

. . . and making sure that the “Public-Key” reads 4096 bit (and not, say, 2048
bit or lower) and that the “Subject” line reads something akin to Subject:

CN=yourfriend2.
Now that you’ve verified the certificate signing request, you may sign the

certificate by running the following command with NAME replaced by a name
with which to refer to your friend with:

$ afrc sign -referred ~/csr.pem NAME

Then all you need to do is read the command output in order to find the signed
certificate and then send your friend their signed client certificate!

5.3 Revoking a Friend’s Certificate

In the unfortunate event that you need to revoke a friend’s certificate, it may
be done by running the following command, where NAME is replaced with the
name of the friend whose certificate you are revoking:

$ afrc revoke-referred NAME

Although you have revoked your friend’s certificate, you must now inform the
server by sending the updated CRL file to me (the admin); the command output
will tell you where to find the CRL file. You will have then completed revok-
ing your (possibly former) friend’s certificate. Beware: this action cannot be
undone.

6 Migrating from friend-of-friend

This guide prior to mid-2020 used a Public Key Infrastructure (PKI) which
I called “Friend-of-Friend”; that was essentialy version 0.1 of what I now call
“Admin, Friend, Referrer” version 0.2. This was done in order to address sev-
eral potential security issues with the old vesion. As a result, the old server
certificates and client certificates will need to be migrated away from.

Thankfully, due to the wonders of certificate validation, it is possible to
configure the server such that clients which trust either the old or new root server
certificate will trust the server and also both old and new client certificates will
be trusted by the server! However, it is not desireable to maintain this state
of affairs indefinitely due to the potential security issues, thus you will need to
migrate to the new root server and client certificate.

2Note that key lengths below 4096 may be accepted by the server as-is, but are not sup-

ported and may break at any time, as weak crypto will be deprecated today and not tomorrow.

7

While it is possible to use your old private key in order to generate a new
client certificate, it’ll be easiest to follow the above instructions from the begin-
ning and get rid of your old client certificate and the old root server certificate.

8

