Abstract

The “Admin, Friend, Referred” (AFR) Public Key Infrastructure (PKI)
allows two-way authentication and authorization between servers and clients.
Clients can consist of either the admin, “friends” whom the admin invites,
and “referreds” whom the admin’s friends invite. The afr tool has been
developed in order to help the admin manage their part of AFR PKI and
the afrc tool has been developed in order to help friends and referreds
do the same. The PKI is still in a prototype state and future work will
involve solving the “Admin revokes referred certificate” use case, possibly
with indirect Certificate Revocation Lists (CRLs). A network protocol for
managing the PKI will likely be critical for usability and thus adoption of
the PKI.

1 Introduction

This paper will describe the “Admin, Friend, Referred” Public Key Infrastruc-
ture (PKI). The PKI is designed in order to allow individual server admins
to provide a secured service to a reasonably limited audience. The below sec-
tions will elaborate on this purpose and then explain the solution adopted by
the PKI. Following sections will detail the structure of the X.509 certificates
used for this solution and the terminology used to describe the various kinds
of certificates used by the PKI. Use Cases for the certificates are then defined
and explained in terms of the certificate structure. Tooling to assist in imple-
menting the use cases is then documented. The previous implementation of
the certificate layout, called “Friend-of-Friend”, and its shortcomings are then
explained. Finally, various items for future work are speculated upon based on
their perceived usefulness.

1.1 Problem Statement

A perennial topic for discussion on the Internet is the creation of distributed
(or federated) services. Distributed services can provide a number of benefits,
such as 1) autonomy, 2) censorship resistance, and 3) a robust infrastructure.
Unfortunately, actually implementing distributed services leads to a large num-
ber of problems. Though all men may be created equal, their skills as system
administrators are certainly not equal, and only a few posses the experience to
competently provide a digital service. Thus it falls to a few to provide for many.

Yet how many users should one provide for, and how will one supply the
means to provide for them? Large numbers of users require powerful equipment
and constant moderation. These things cost money, but users are often cheap
and unwilling to pay for services. One option is to monetize via advertising, but
advertising tends to be alienating and privacy-invasive. Another option is to
provide the service free of charge, but a large number of demanding users tends
to quickly exhaust an administrator’s charity. Likewise, the larger the userbase,
the higher the likelihood for shady and unscrupulous individuals which will
increase the moderation burden on the administrator; yet too small of a userbase

means that no one is interested in using the service. The administrator thus
needs a way to manage their userbase in a reasonable manner.

1.2 Proposed Solution

In order to address the userbase issue, a solution of semi-controlled expansion
using the X.509 client certificates provided as part of a Secure Sockets Layer
(SSL) / Transport Layer Security (TLS) PKI is proposed. There are three
categories of user as part of the PKI: the admin, who is the administrator of
the server; a friend, a user who is invited by the admin; and referred users,
who are invited by friends. Allowing friends to refer users to the service allows
for limited growth while ensuring that any new user must be vetted either by
the admin or someone whom the admin knows. Using X.509 certificates for
authentication and authorization allows the proposed solution to work with
any TCP/IP connection and to make use of already widely-deployed SSL/TLS
libraries. Thus the solution can limit growth to what is intended to be tolerable
to an admin and can also be widely-deployed without the burden of additional
software.

2 Structure

Figure 1 illustrates the certificate layout used by the current version of AFR.
The kinds of certificates, their purpose, and their attributes are described as
follows.

2.1 Root Certificate

The root certificate is the trust anchor for the entire PKI. Its purpose is to issue
service and signing certificates.

2.2 Service Certificate

A service certificate is meant to be used by a program which acts as a server.
This may be an IRC server, Web server, Mumble server, or other kind of server.
The intent is that a service certificate will authenticate a service to the end
user. A single service certificate should be issued for each separate program,
so that a compromise of one service does not affect others (but see 6.4). The
certificates must have a basicConstraints of critical,CA:False so that it
cannot issue further certificates. The extendedKeyUsage extension must also
be set to critical,serverAuth in order to ensure that the certificate is only
used for server authentication.

2.3 Signing Certificate

A signing certificate is meant to issue certificates for client authentication. A
signing certificate is owned by the AFR admin and may issue either client cer-

I: Root
S: Root
I: Root I: Root
S: Service S: Signing
I: Signing I: Signing I: Signing I: Signing I: Signing
S: Friendl S: Referrerl S: Friend2 S: Friend3 S: Referrer3
Y Y
I: Referrerl I: Referrerl I: Referrers3
S: Referredl-1||S: Referredi-2 S: Referred3-1

ferrer certificates while Friend 2 was not. Friend 1 issued two referred certificates

Figure 1: Example of an AFR PKI. In this case Friends 1 and 3 were issued re-
while Friend 3 issued only one.

tificates or referrer certificates (discussed later). The intent is that all clients
authenticate themselves through a client certificate which has the signing cer-
tificate as part of its chain of trust. It is currently intended that only one signing
certificate shall exist. The signing certificate must have a basicConstraints of
critical,CA:TRUE, pathlen:1; this authorizes the signing certificate to issue
referrer certificates which are Certificate Authorities (CAs), but prevents re-
ferrer certificates from issuing further CAs. The extendedKeyUsage extension
must also be set to critical,clientAuth in order to ensure that the signing
certificate and any certificates issued by it are used only for client authentica-
tion.

2.4 Referrer Certificate

A referrer certificate is also meant to issue certificates for client authentication.
Unlike the signing certificate, which is owned by the admin, a referrer certificate
is owned by a friend, who should already have a corresponding client certificate
issued by the signing certificate (friend certificate). The intent is to allow the
friend to invite their friends as referred users. The referrer certificate must have
a basicConstraints of critical,CA:TRUE, pathlen:O0 in order to allow it to
issue new client certificates and thus invite new users. The extendedKeyUsage
extension must also be set to critical,clientAuth so that the certificates it
issues can only be used for client authentication.

2.5 Client Certificate

A client certificate is meant to be used in order to authenticate an end user to
the service. There are two different kinds of client certificates, depending on the
issuer of the certificate. A certificate issued by the signing certificate (and hence
issued by the admin) is called a friend certificate, while a certificate issued by a
referrer certificate (and hence issued by a friend) is called a referred certificate.
A client certificate must have a basicConstraints of critical,CA:FALSE so
that it is not allowed to issue additional certificates. The certificate should
also have an extendedKeyUsage extension of critical,clientAuth, though
the corresponding entry in the signing and/or referrer certificate should render
this redundant.

2.6 Friend Certificate

A friend certificate is a client certificate which has been issued by the signing
certificate (see above).

2.7 Referred Certificate

A referred certificate is a client certificate which has been issued by a referrer
certificate (see above).

3 Use Cases

The following use cases are considered with regards to the proposed AFR PKI.
A number of use cases are identical except which kind of user (admin, friend, or
referred) is performing the action. While the basic use cases are mostly covered,
a few of the advanced use cases around disaster scenarios (service & signing CA
compromise) are not yet fully considered. Tooling implementing the use cases
is covered in the following section.

3.1 Initialize

This one-time setup creates the basic infrastructure of an AFR PKI. It is in-
tended to be applicable when an admin is first setting up their AFR PKI. Cer-
tificates and keys are generated for the root, service, and signing certificates.
Note that the admin’s client certificate is not actually generated as part of this
step; instead, that certificate can be generated as a regular friend certificate.

3.2 Issue friend’s client certificate

The signing certificate issues a client certificate for a user. The intent is to
either to enable the admin to authenticate themself to the service or to allow
the admin to enable a friend to authenticate themself to the service.

3.3 Revoke friend’s client certificate

The signing certificate revokes the specified friend’s client certificate and gener-
ates an updated CRL. If the specified friend also has a referrer certificate then it
should also be revoked. The intent is to allow the admin to ban a misbehaving
friend from the service.

3.4 Issue friend’s referrer certificate

The signing certificate issues a referrer certificate for the specified friend, the
friend then generates a CRL and sends it to the admin. The friend should
already have a corresponding client certificate issued by the signing certificate.
The intent is for the admin to allow a friend to invite referred users. Note that
a CRL must be generated by the referrer certificate and sent to the admin,
otherwise most software will refuse to recognize any certificates issued by the
referrer certificate due to lack of a valid CRL for the referrer certificate.

3.5 Revoke friend’s referrer certificate

The signing certificate revokes the specified friend’s referrer certificate and gen-
erates a new CRL. This will also have the effect of banning all people whom
the friend has invited by invaliding any referred certificates issued by the friend.
The intent is to revoke a friend’s invite permissions if those permissions have

been misused. This does not ban a friend from authenticating to the service
(that would require revoking their client certificate), only their ability to invite
users.

Since it may or may not be desirable to ban all people whom the specified
friend has invited, it may be worth considering a mechanism by which the admin
could selectively re-issue friend certificates in place of referred certificates. This
is not currently implemented.

3.6 Admin revokes referred certificate

The signing certificate revokes a referred certificate and generates a new CRL.
The intent is to allow the admin to revoke a referred user in the event that the
user is misbehaving and when contacting the referring friend in order to revoke
the referred user would be imprudent.

This use case is extremely non-trivial as it appears to involve using an indi-
rect CRL extension which does not appear to be fully supported by the OpenSSL
command-line tools. As such, this use case is currently not implemented, though
its implementation is considered necessary for a version 1.0 milestone. The
workaround is to ban the friend at the application level, if possible, and then
either tell the friend to ban the referred user in question, or revoke the friend’s
referrer certificate.

3.7 Friend issues referred certificate

A friend uses their referrer certificate in order to issue a referred certificate. The
intent is to allow authorized friends (referrers) to invite users (referreds) to the
service.

3.8 Friend revokes referred certificate

The referrer certificate revokes the specified referred certificate, generates a new
CRL, and then sends the new CRL to the admin. The intent is to allow a friend
to ban a referred user. The trick here is that the new CRL must be sent to the
admin, otherwise the service will have no way of knowing that the referred user
has been banned.

3.9 Friend revokes own client certificate

This use case is not currently supported. As a workaround, the friend tells the
admin to revoke their client certificate and the admin revokes said certificate
using the signing certificate. The intent is to allow the friend to quickly self-ban
in the event of key-compromise.

3.10 Friend revokes own referrer certificate

This use case is also not currently supported. As a workaround, the friend can
tell the admin to revoke the referrer certificate and optionally issue a new one.

The intent is, again, to allow the friend to revoke their referrer certificate in
the event of key compromise. It would be good if a friend had a method for
re-issuing any referred certificates after receiving a new referrer certificate.

3.11 Referred revokes own referred certificate

This use case is not currently supported. A similar workaround to a friend
revoking their own client certificate can be applied here, except the referred will
ask their corresponding friend to revoke their client certificate. Useful in the
event the referred has their key compromised.

3.12 Revoke service certificate

This disastrous use case is also not currently supported. The main problem here
is that many applications do not support CRLs and even then there is no easy
way to inform clients of the compromise. OCSP may be a solution here, but it
is not clear how many non-web browser applications support this protocol. A
workaround is to limit the lifetime of the service certificate, but an excessively
short lifetime is annoying from an administration perspective; all the more so
because the root certificate’s private key should be stored offline in a secure
location. The current tooling uses a duration of slightly over a year.

3.13 Revoke signing certificate

The root certificate revokes the signing certificate, then the admin must generate
a new signing certificate which re-issues all of its friend and referrer certificates,
then each friend with a referrer certificate must re-issue each of its referred
certificates. This is all theoretically possible, but it will require a herculean
effort and will likely make a lot of users very annoyed in the process without
adequate tooling. This use case is currently not supported in any meaningful
sense.

3.14 Root certificate compromise

Doomsday scenario. Game over. There is no recovery from this.

4 Tooling

As hand-crafted certificate generation and management is extremely cumber-
some, some tooling has been developed in order to assist in this regard. Please
be aware that the tooling is currently written in a “good enough for now” man-
ner and lacks the robustness and feature set of a mature program. The following
sections explain some general concepts about the tooling thus developed, fol-
lowed by its two main front-ends, afr and afrc.

4.1 Concepts

As mentioned above, two utilities are currently provided: afr and afrc. The
afrc utility is created for admins while the afrc is created for friends and
referreds (or clients, hence the “c” suffix). Both tools consist of a series of sub-
commands meant to either implement or help implement one of the use cases de-
scribed previously. The tools are written in bash and get their configuration by
using the source command on a file in order to set configuration variables. An
OpenSSL configuration file (whose default location is /etc/afr/openssl.cnf)
is also used by the tools for various bits of OpenSSL configuration and exten-

sions. Functions common to both tools are placed in the afrc_1ib. sh file.

4.2 The afr tool

This tool can be used by an admin in order to help manage an AFR-enabled ser-
vice. The tool is configured by a configuration file located at /etc/afr/afr.conf
(or at the location provided after the -c argument); it is highly recommended
that admins edit this file in order to specify important values such as the address
of their service, otherwise the service certificate will not validate.

A brief description of each of the commands is as follows. Note that many
commands make use of a NAME parameter which can be used to uniquely refer
to a specific friend; choose a value that is both easy to remember and type here.

4.2.1 init
Initialize the root, service, and signing certificates for an AFR PKI. Implements
use case 3.1.

4.2.2 receive-crl

Receives the specified CRL from the specified friend’s referrer certificate. This
command does not implement any specific use case on its own, but is part of
implementing use cases 3.4 and 3.8.

4.2.3 revoke-friend

Revokes the specified friend’s client certificate. Note that you must also man-
ually call revoke-referrer in order to revoke the specified friend’s referrer
certificate as well (if applicable). Implements use case 3.3.

4.2.4 revoke-referrer

Revokes the specified friend’s referrer certificate. Implements use case 3.5.

4.2.5 sign-friend

Issues a friend certificate for the specified friend’s certificate signing request
(CSR). Implements use case 3.2.

4.2.6 sign-referrer

Issues a referrer certificate for the specified friend’s certificate signing request.
Implements use case 3.4.

4.3 afrc

This tool is meant to be used by friends and referreds in order to help them
manage their AFR certificates. The tool is meant to be run with minimal set-
up; while an AFRC configuration file for this tool is optional, an OpenSSL
configuration file is still required at /etc/afr/openssl.cnf. Data is stored in
the ~/.afrc directory by default. A short description of the available commands
follows.

4.3.1 init

Does the initial set-up for a user’s certificate. This means generating the private
key and certificate signing request for the user. Accepts a NAME parameter for
the Common Name (CN) of the CSR. Implements part of use cases 3.2 and 3.4.

4.3.2 receive-client

Receives a signed client certificate request. To be used after the admin or
referrer has authorized the user for access by providing them with a signed
client certificate. Implements part of use cases 3.2 and 3.4.

4.3.3 receive-referrer

Receives a signed referrer certificate request and generates a CRL for the referrer
certificate; the user must make sure to provide the CRL to the admin otherwise
the users that the referrer invites will not be authorized. Implements part of
use case 3.4.

4.3.4 request-referrer

Generates a CSR for a referrer certificate. Intended to be used by friends who
would like to request invite privileges from the admin. Implements part of use
case 3.4.

4.3.5 revoke-referred

Revokes a referred certificate and generates a new CRL for the referrer cer-
tificate. The user must make sure to provide the admin the updated CRL.
Implements part of use case 3.8.

4.3.6 sign-referred

Signs a referred’s certificate signing request. The user must then be sure to
provide the signed certificate to the referred user. Implements part of use case
3.7.

5 Previous Version
A former iteration of this PKI was dubbed “Friend-of-Friend”, unofficially ver-

sion 0.1.0 of the now-renamed AFR PKI. It’s structure is simplistic, and is
outlined below:

I: Root
/S: Root\
I: Root I: Root
S: Friendl S: Friend2
I: Friendl I: Friendl I: Friend2 I: Friend2
S: FoF1-1 S: FoF1-2 S: FoF2-1 S: FoF2-2

There are numerous problem with this architecture which the newer AFR
PKI attempts to address. First, the same certificates are used for both sign-
ing and authentication; this allows the potential vulnerability described in
Schneier’s book, “Applied Cryptography”, section “Resending the Message as
a Receipt”. While an amateur look at the TLS 1.3 protocol suggests that this
attack isn’t actually feasible, it seemed reasonable to mitigate the attack any-
ways due to the nature of public-private key cryptography. Second, there were
no extensions on any of the certificates issued by the root CA which would pre-
vent a user from spoofing as the service (a rookie mistake). Lastly, the root
certificate’s private key would have to exist on the running system in order for
the service to authenticate itself to clients, meaning that a compromise of the
service would result in the compromise of the entire PKI; while this situation
isn’t much improved with the AFR PKI due to the difficulty of re-issuing client
certificates and revoking service certificates, a means of recovery could poten-
tially be implemented in the future. There are likely other flaws in this PKI
which the author is not aware of.

6 Future Work

The current version and tooling around AFR is more of a proof-of-concept than
anything that could be practically used in a large number of deployments. Below
are areas for potential research and improvements.

10

6.1 Indirect CRLs

First and foremost regarding features will need to be a working implementa-
tion of Indirect CRLs in order to implement Use Case 3.6 (Admin revokes
referrer certificate). This appears to be a matter of setting the extensions
cRLDistributionPoints and DistributionPoint in the end-entity (client)
certificate and also setting the IssuingDistributionPoint extension’s indirectCRL
boolean to TRUE and creating corresponding CertificateIssuer entries in the
signing CA’s CRL. There are a number of practical and protocol issues that
prevented this from being implemented in the current tooling, though.

The first issue is that OpenSSL (1.1.1g) did not appear to support setting the
CertificateIssuer extension in the CRLs generated via the ca command; this
is likely in part because the CRL is generated from a plain text file database that
does not have fields in which it can store information about certificates issued
by other CAs. While initial analysis suggests that the tools themselves support
indirect CRLs, the mechanisms for generating one in the needed fashion do not
appear to be a part of the command-line tools. A second potential issue is that
supporting indirect CRLs is optional for an X.509 PKI; this will likely not be an
issue since this feature is of primary importance to the service, which can ensure
support is enabled, and not the clients. A third potential issue will be making
sure that CRLs from both the referrer and signing certificate are processed;
this may involve abusing the reason fields. Fourth, a potential issue is that
the cRLDistributionPoint extension must be placed in the referred certificate
rather than the referrer certificate; what would happen if a referrer, through
neglect or malevolence, left off this extension? Finally, on the theoretical side, if
using an actual network protocol for AFR (see below), it may make more sense
to have the signing certificate issue all revocations; since the referrer needs to
upload their CRL to the server anyways, the referrer could instead authenticate
using the network protocol and then tell the signing certificate to revoke the
specified referred certificate.

Getting Indirect CRLs working properly, or, more accurately, finding a way
to implement Use Case 3.6 is the biggest risk in getting this protocol to version
1.

6.2 Network Protocol

Contrary to all expectations, users are not thrilled when told that, in order to
use AFR, they must type in a large number of arcane OpenSSL commands.
The current tooling around AFR is not particularly usable, so some way to
make the PKI easier to use must be created if it is ever to be useful for a
wider audience. Perhaps the best way to implement this would be some kind of
network protocol which could then be implemented by the end-user application.
The protocol may exist on a port separate from its corresponding service, or it
may co-exist with the service (perhaps similar to how STARTTLS can co-exist
with an existing protocol). Certificate Signing Requests and Signed Certificates
can be stored on a server as part of the protocol implementation in order to

11

facilitate a central distribution location. There’s much that can be done here,
but the rest will be left to speculation for now.

6.3 Web Browser Plugin

If a network protocol is created then it might make sense to have a web browser
plugin which implements the protocol. The plugin API would need to expose
endpoints for overriding the default PKI of the browser on a per-site basis,
though, otherwise foreign services from the default root CAs could Man-in-the-
Middle the service connection, or the service could Man-in-the-Middle other
sites which the user visits. More research into the API of Web Extensions will
be needed.

6.4 Revoking Service Certificates

There is currently no good way to revoke a service certificate such that the
user properly rejects revoked service certificates. Judging by the fact that most
client applications do not appear to support protocols such as Online Certificate
Status Protocol (OCSP), this does not appear to be a problem particular to the
AFR PKI.

6.5 Revoking Signing Certificates

In case of disaster (a cracked service), some effort ought to be put into tooling
that helps in the reissuing of certificates in the event of a signing certificate
compromise. Providing the admin a selection mechanism for certificates to
reissue, perhaps based on the client’s private key, and means to automatically
store and reissue client and referrer certificates for successfully authenticated
clients would seem to be a good path forward here, and could be implemented
as part of the network protocol and service.

6.6 PAM Integration

It may make sense to write AFR as a PAM module so it can be plugged into a
wide variety of services. Or not. More study of PAM is required here.

6.7 Multiple Service Certificates

The tooling should be developed further in order to provide support for multi-
ple services. It makes sense that one would have a single set of clients which
are authorized for a plurality of services (such as IRC, Mumble, and mail, for
example). Each service should be provided a separate certificate so that the
compromise of one service does not affect the other services.

12

6.8 Link Friend and Referrer Certificates

The link between friend and referrer certificates is currently implemented rather
artificially in the tooling by file name conventions. This will break down com-
pletely when certificates are re-issued, and it further has the problem that the
metadata is not stored in the certificate itself. There needs to be some mech-
anism to specify that a certificate belongs to a specific account. An optional
extension to be added to the certificate would likely suffice here. In addition,
tools which are AFR-aware could then automatically map a client certificate
to a specific account and log the user in appropriately, though this will be
complicated by the fact that referrers may accidentally (or malevolently) issue
accounts with the same names at the same time as other referrers, hence any
account for a referred will need to be an amalgamation of the referrer account
and the referred account.

13

